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ABSTRACT

We study the singularly perturbed two-point boundary value problem on the

interval (-1,1)

-cu" + p(x)u' + q(x)u = 0, u(-l) = A, u(l) = B

in which the coefficient p has zeros in the interval (-1,1). For the case

where p has precisely one zero we give a survey of our method of construction

of an asymptotic approximation of the solution via the eigenfunction expansion,

and we show that "Ackerberg -O'Malley resonance" is identical to ordinary

resonance, namely that a free mode in the solution is amplified strongly by a

,small divisor. For the case where p has several zeros and where q is

identically zero we construct an asymptotic approximation and prove its validity

by a variational (Galerkin) method. The methods described in this paper can be

generalized to turning point problems in several dimensions.
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SIGNIFICANCE AND EXPLANATION

Consider the two-point boundary value problem

+ xu - u 0, u-1) = A, u(l) = B

with 0 < < . For certain values of( namely the eigenvalues, the

problem need not have a solution; for -> +0 those eigenvalues tend to the

non-negative integers. Although for values near such an eigenvalue the

solution exists, it is very sensitive to small changes in O and for a

long time it has been unknown how to construct a rigorous asymptotic approxima-

tion to it. Yet an asymptotic approximation is of interest since the equation

and its generalizations offer a deterministic model for the motion of a particle

in a potential field, which executes a random walk under influence of small

random forces. Zn this paper we construct asymptotic approximations to

solutions of such problems, in which the coefficient of u' has one or several

zeros (turning points) and we prove their validity.
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THE SINGULARLY PERTURBED TURNING POINT PROBLEM:

A SPECTRAL APPROACH

Pieter de Groen

1. INTRODUCTION.

In a survey paper [1] on "the capriciousness of singular

perturbations", Wasow gives a number of examples of singular

perturbation problems which display unexpected behaviour.

One of his examples is the following simple looking two-point

boundary value problem on the interval (-1,1)

cu" - p(x)u' = f(x), u(-l) = u(l) = 0 (1.1)

in which the coefficient p changes sign at x = 0, p(0) = 0

and p(x) Id 0 if x # 0. It looks natural that the solution

converges to a solution of the reduced equation pu' = f

with the possible exception of neighbourhoods of the boundary

and of the point x = 0, at which the reduced equation has a

singularity. Referring to an unpublished part of his Ph.D.-

thesis (1942) Wasow states:

(i) if p'(0) < 0 the solution of (1) converges on

[-1,0) and on (0,1] to solutions of the reduced

equation pu' = f, which satisfy the boundary

conditions at +1 and -1 respectively; the

limit is discontinuous at x = 0.

(ii) if p'(0) > 0 the solution of (1) diverges in

general.

This divergence in (ii) is not "generic"; it is rather excep-

tional and is due to the lack of a zeroth order term in (1.1).
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Problems of type (1.1) have become famous by a paper of

Ackerberg and O'Malley, in which they construct formal

approximations to the solution of the problem

Cu" p(x)u' + q(x)u = 0, u(-l) = A,u(l) = B (1.2)

Their approximations do not decay exponentially if p'(0) > 0
and q(0)/p'(0) is a non-negative integer, a phenomenon they

have called "resonance". This paper has been followed by a

large number of other papers, studying this subject, mostly
by formal methods.

The existence of "resonance" for problems of type (1.2)

can be proved in several ways, all of which have in common

the introduction of an additional parameter, which performs a
"resolution of the singularity". Olver (3] constructs an

approximation by linking together uniform approximations of

independent solutions of the equation containing an addi-

tional parameter 6. The linking across the turning point

yields conditions on 6(e) for "resonance" to occur. Kopell

[4] (see also this volume) introduces an additional parameter

6 and studies the continuity with respect to 6 of certain

integral manifolds of solutions, whose geanetric properties

yield criteria for "resonance". Both approaches have in

common, that they do not construct an approximation of the

solution of (1.2), but that they determine a function S(e)

such that the perturbed problem

Cu"-p(x)u' +q(x)u+6(e)u=o, u(-l) =A,u(l) =B , (1.3)

displays "resonance". In our approach [5], before we try to

solve (1.2), we first analyse the associated homogeneous

problem

Cu"-p(x)u' +q(x)u+Au = 0, u(-l) = u(1) = 0 (1.4)

which can be recognized as the eigenvalue problem associated

with (1.2). Formally this looks not much different from (1.3),

yet the spectral analysis yields a quite different descrip-

tion of approximations of the solution of (1.2).

In this contribution we shall give an overview of the

paper [5] and we shall give for the particular problem (1.1)
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with several turning points an analysis, which can be gener-
alized to the analogous problem in several dimensions. This
particular problem (1.1.) has applications to exit problems
for Brownian motion in potential wells, cf. [6].

2. MOTIVATION BY AN EXAMPLE.

In order to motivate the spectral approach, we consider
the particular problem

u- xu' + Au = 0, u(-l) = A, u(1) = B . (2.1)

Its exact solution u can be expressed in terms of con-
fluent hypergeometric functions,

uC(x) = (A + B) F(-iX;i;x /2c) (2.2)(A+)F (-iA; ,l12e)

- A) xF(i- 1;3/2;x/2)

provided the denominators are non-zero. Since they are non-

zero for each fixed X and e small enough (non-uniformly

depending on A), we find the asymptotic formulae for e - 0,

u (x) A exp{(-l-x)/e} + B exp{(x-l)/c}, (2.3a)

if X 1 0,1,2,...,

u(x) (B + (-l) A)x (2.3b)

+ 1 (B - (-1) A)exp{- (x - 1) 2/201,

if A = 0,1,2,...,

valid for constant A.
If one of the denominators in (2.2) is zero for some

A(c), a solution of (2.1) need not exist, the homogeneous

problem

cu" - xu' + X(C)u = 0, u(-l) = u(1) = 0 , (2.4)

has a non-trivial solution (eigenfunction) and A(E) is an
eigenvalue. Actually, it is well-known that the denominators
in (2.2) as functions of A have denumerably many zeros

Ak(c) for each c > 0; Sturm-Liouville theory implies that

the corresponding set of eigenfunctions ek(x,c) is complete.

Let us now assume that Z is a formal approximation to
the solution of (2.1), satisfying the boundary conditions
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Z (-I) - A and Z (1) - B exactly, then we can insert it inC C
equation (2.1) and expand its residue in the eigenfunctions,

EZ" - xZe, + XZC=Xa ekkk

Sturm-Liouville theory then implies

k kekuEZ - Z = k I- Xk(C) "(2.5)

We see from this expression that Z can be a good approxi-

mation, unless one of the denominators in the right-hand side

is small. If a denominator in (2.5) is small enough, it can

amplify the corresponding eigenfunction in the expansion of

u - ZE so strongly, that it is the dominating term in the

approximation of u.. Clearly, "resonance" in the sense of

Ackerberg & O'Malley or in the sense of Kopell is identical

to the well-known phenomenon of resonance in Mechanics, namely,

that a free mode is strongly amplified by a small divisor.

Since equation (2.4) is transformed to Hermite's equa-

tion by the change of the independent variable x = on a

&-interval which becomes unbounded for e - 0, the eigen-

values of (2.4) tend to the non-negative integers. This fact

is reflected in the asymptotic formula (2.3b).

This example indicates, that, before trying to approxi-

mate the solution of the general problem (1.2), we should

analyze the spectrum of the associated differential operator

L ,

LEu := -cu" + pu' - qu (2.6)

and that we should show existence of a solution of (1.2). It

is this aspect that distinguishes our approach from all other

ones.

3. FIRST-ORDER APPROXIMATIONS OF THE EIGENVALUES.

For a study of eigenvalues and for application of Sturm-

Liouville theory the operator LI, defined in (2.6), does

not look very suitable, since it is not selfadjoint in the

usual space of square integrable functions. This can be

amended in two equivalent ways:
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(M) Perform the Liouville transformation,
lx

v(x) = u(x)J,(x), J (x) :=exp{--Lf p(t)dt}. (3.1)
S 2 0

It transforms the operator (2.6) and the eigenvalue

equation (1.4) to a selfadjoint form,

M V := -cv"-I+ (P.- P' - q) v= Xv, v(O) = v(1) = 0. (3. 2)

(ii) Consider the operator L in the space of weighted

square integrable functions, in which the inner

product is given by

1 2
(uv) := f U(X)V(X)JC (x)dx (3.3)

With respect to this inner product L is

selfadjoint.

Both methods have their virtues. We shall employ the

first one in order to derive a first approximation to the

eigenvalues. Once the convergence of the eigenvalues to

well-separated limits is established, the second method is

easier for setting up an iterative scheme by which we can

obtain approximations of higher order.

The tool we use for the derivation of a first estimate

is Rayleigh's minimax characterization of the eigenvalues of

a selfadjoint operator. Let

U(M ) = {Ik(c)Ik = 0,1,...} with Xk < Xk+ 1  (3.4)

be the set of eigenvalues of M , ordered in increasing

sense, then the k-th eigenvalue satisfies, cf. (71,

Xk(c) = min max (M u,u) , (3.5)Ecl(l ),dmEklueE, Hlu 11=1
0

where (.,.) is the usual inner product in L2 and 1I"iH

the associated norm.

From (3.5) it is clear that each set of k + 1 indepen-

dent trial functions yields an upper bound for the k-th

eigenvalue. If p(0) is the only zero of p in [-1,1],



we find a suitable set of trial functions as follows. Apply

to equation (3.2) the stretching = x IP' (0)I/2c and

expand the coefficients in powers of /F, then we find the

lowest order part

A 2v + C 2 P'(0) + X + g(0) v . (3.6)
_2 21p (0) i +p' (0)

This equation has a decaying solution only if the coefficient

of v in the right-hand side is a positive half-odd integer,

say j , namely Hj(E)exp (- 2 ). Using the first k+l

of those as trial functions for Xk (correcting them such

that they are zero at the boundary) we obtain the upper bound

Skp' (0) - q(0) + Ckc if p' (0) >0 ,

(k + l).p' (0) -q(0) +Ck E if p' (0) < 0

The minimax in (3.5) decreases if the minimizing sub-

space E is taken from the larger space of functions which

need not be continuous at x = ±ek and which have square

integrable derivatives only in the subintervals (-I,-c ),
(-Ck,+Ek) and (ck,l). Hence Xk is larger than the k-th

eigenvalue in the joint spectrum of the restrictions of M,

to those subintervals with Neumann boundary conditions. Since

the potential term in M on the subintervals (-i,-L ) and

(eil) is bounded from below by - i for some y > 0, the

smallest eigenvalue of these restrictions is larger than

ye- i. On (-e ,e ) the potential of M is estimated from

below by V ,

:= P ()I - 2 (0) -q(0)- , (3.8)

if a and 8 are chosen suitably. Hence Ak is bounded

from below by the k-th eigenvalue n k (e) of the problem

-cu" + V (x)u = Au, u' (± c ) = 0 . (3.9)

For this problem it is (with the stretching = x/ ) not

difficult to show, that its eigenvalues satisfy
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k p' (0) - q(0) + 0(c) if p' (0) > 0,
71k(C) 1) (3.10)(k~~p'0) q(0 +0 } ) if p'(0) <0.

So we have given a sketch of the proof of the following

theorem:

Theorem 1: The eigenvalues of L satisfy for e * 0 the

estimates:

kp' (0) - q(0) + 0(c}) if p' (0) > 0,
Ak(e) = (3.11)X (k+1)p'(0) -q(O) +0(0 ) if p'(0) <0.

For details of the proof we refer to (5].

If p has several simple zeros in the interior of the

interval, every zero produces a set of eigenvalues, which

satisfies the analogue of (3.11). If p has a zero at the

boundary, this zero produces "half" of the above set of eigen-

values, namely only the ones with odd index, the even ones

being ruled out by the boundary condition. The proof is

analogous to the one above. For every zero of p we now

construct a set of Hermite-functions as trial functions; this

yields an upper bound. For a lower bound we make the same

type of restrictions to 0(ek)-neighbourhoods of the zeros of

p as above.

4. APPROXIMATIONS OF HIGHER ORDER TO THE EIGENVALUES AND
EIGENFUNCTIONS.

In order to obtain approximations of higher order, we

return to the original operator L., which is selfadjoint

with respect to the weighted inner product (3.3). We assume

now that p' (0) is positive, such that the weight function
2

J 2takes its maximum at x = 0 and is exponentially small

(relative to the maximum) outside a small neighbourhood of

this point. This implies that our norm hardly notices errors

of an approximation if they are only of polynomial order in

C. Therefore the algorithm we devise here for the approxima-

tion of the eigenfunction does not care for errors outside a

neighbourhood of the point x = 0.

For the construction of a formal approximation of the

k-th eigenvalue Xk(c) and the associated eigenfunction

-7-
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ek(x,c) we perform the stretching x := xp' (0)/2e in the

eigenvalue equation (1.4), we insert the formal expansions

2p(EV2c/p' (O))//'2_p' (0) = 2E + [ pid 1  (4.1)
i=l

ii~

Xk(c) = kp' (0) - q(0) + . p'(0) X d (43j= k (4 3)

ek (&.'2 E/p'(0),c) = I ekj ()d (4.4)
j=0

and we collect equal powers of e. This results in the

recursive system of equations (e' = de/d&)

enj - 2Ee~j + 2kekj (4.5)

d- (PjY + qi + Xki)ek,j-i-i
i=l

from which the unknown functions ekj and the coefficients

Xki are determined. Clearly, ekO satisfies Hermite's

equation; all its solutions are exponentially growing except

the Hermite polynomial Hk . Herce we may choose ekO = Hk -

The next term ekl satisfies Hermite's equation with a

polynomial right-hand side,

el - 2e l + 2kekl = plE2H + (qlE + Xkl)Hk (4.6)

Again its solution is exponentially increasing, unless it is

a polynomial. The particular equation

y" - 2&y' + 2ky = H. (4.7)J

has the polynomial solution y = Hj/(2k - 2j), provided

k jO j. If k = j every solution of it is exponentially

increasing. Writing the right-hand side as a sum of Hermite

polynomials, we see that a unique coefficient Akl exists,

such that this right-hand side does not contain a multiple of

H . More generally, in every step of the recursion (4.5) we

-8-



can determine a unique A which suppresses the presence of
exponentially growing terms in the solution. Finally we show

that the odd coefficients A k,2i- (i = 1,2...) must be zero.

If k is even (odd), then Hk is an even (odd) function and

the right-hand side of (4.6) is odd (even) provided Akl = 0

and cannot contain a non-zero multiple of H Analogously,

if j is odd and Aki = 0 (i = 1,3,...,j), then the right-

hand side of (4.5) is odd (even) is k is even (odd).

In order to prove validity of those expansions, we

define the partial sums A and Ekj by
kj k

1 j-i i
Akj(E) := kp'(0) - q(0) + p'(0)i.l k,2ic

(4.8)29-1
Ekj (X,c) := p(x) . I eki (xJ2 e/p'(0)) ,

i=O

where p is a C' cut-off function,
13

p(x) = 1 if lxi < 2' p(x) = 0 if lxi > (4.9)

The above construction implies

jI(L - Akj)Ekjllw= 0( j llEkj 11w) . (4.10)

Expanding Eki in the true eigenfunctions and using the

initial estimate (3.11) we easily find (cf. [5]):

Theorem 2: The eigenvalues of L admit the asymptotic

expansion

1
Ak(e) =kp' (0) -q(0) + p (0) Xk k E + 0( ) (4.11)ki=1 k,2i

(C+ 0), Vj,

and the associated eigenfunctions satisfy:

1lEkj - Pkjekllw= 0(CjlIEkjI1w) ,  (4.12)

where Ukj := lek11w/1IEkjllw"

Obviously, the estimate (4.12) in the weighted norm

can give good pointwise estimates of the error only in a

-9-



neighbourhood of diameter 0(/c) of the maximum of the

weight function. Such a pointwise estimate can be obtained

from the following variant of Sobolev's inequality,

2 2 ))dx 2X(4213)
(x)Jax) = f U4 1C

a

= 2 (u,u')w - (puu)w/ _ cllull 2/E + Iu' II 2 _

< c llull2/e + lullw 'lL uM , Vu c H-l, 1)

where we used the identity

Ilu' IIw= (-u" + pu'/E,u) w = (L u + qu,u) /e . (4.14)

These estimates (4.12-13) imply the pointwise estimate

Ekj(x,c) -Ukje k(x,) <C C j , YX e (-Y/,,Y/,) . (4.15)

The approximations E to the eigenfunction ek wekjk
have constructed up to this point, are in fact the internal

boundary layer terms, valid only in a neighbourhood of the

turning point x = 0. In order to construct a uniformly

valid approximation we have to match the internal layer terms

to regular expansions valid in (-1,0) and (0,I). The

integration constants are uniquely determined by the matching

(cf. [51). These regular expansions are matched to the

boundary conditions in ordinary boundary layers. If we start
with the normalization ekO = Hk, the approximation is of

order unity in an 0(/e)-neighbourhood of x = 0 and hence

of the order 0 (c
- k/2) globally on the interval.

The validity of this formal approximation can be proved

by common barrier function techniques. Since we already have

a good approximation in an 0(/E)-neighbourhood of x = 0,

we can restrict the problem to subintervals (-l,-ye) and

(Y/r,l) for a suitably chosen y > 0, where the lowest

order term of the regular expansion multiplied by log(x) is

a good barrier function, cf. [5 & 71.
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Remarks:

i) If p' (0) < 0 we can prove the analogue of

Theorem 2 by considering the L2-adjoint L* of L ,
C C

* 1
L u := -Cu" - (pu)' - qu, u e H0 . (4.16)

It has the same eigenvalues as LC has, and the

sign of p is reversed, such that we can apply

Theorem 2 directly. The eigenfunctions e of

L and ek of L€ satisfy the relation

* -2=ekJ 2 =e k  (4.17)

(ii) In general there is no reason why the asymptotic

series for Xk(e) should converge, hence it is

impossible to determine apprcximations of it with

exponentially small errors, unless p and q are

analytic.
(iii) If p has several zeros, the above method for

determining asymptotic power series for the eigen-
values works equally well. It is not yet clear

how we can construct uniformly valid approximations

to the eigenfunctions on the whole interval.

5. EXPONENTIAL DECAY AND RESONANCE (THE CASE p' (0) > 0).

If no eigenvalue of Le is zero, a solution for problem

(1.2) exist. For the case p' (0) > 0 we shall construct an

approximation following the suggestion of the example in

Section 2.
For problems of this type boundary layers are generally

expected at both end points of the interval, since the singu-

lar solution of L u = 0 is increasing near x = +1 and

decreasing at x = -1. Hence we can by usual methods con-

struct a formal approximation Z , which consists of boundary

layer terms at x = ±1 only, which is exponentially small in

the interior of the interval and satisfies for some k the

uniform estimate

kLcZ¢ = 0(C k ) (C 0) (5.1)

-11-



and the boundary conditions

Z (-I) = A, Z (1) = B . (5.2)

We easily find the lowest order term:

Z (x) = A exp(p(1) (x - 1)/c) (5.3)

+ B exp(p(-l) (-1 - x)/c) + 0(e)

Following the suggestion of formula (2.5) we expand the

residue in the true eigenfunctions,

(LCZ ,e) wLc€  Pj1 ) :=.Lj=Z 0 jej, i P)(ej,e j w

Hence, if Xk(E) - 0 (C + 0),

Mlu - - akek/Xk w 0(llLJ5 Zllw) (5.5)"

Since the weight function in the weighted inner product is

exponentially snall outside a neighbourhood of x = 0, the

coefficient k  is exponentially small (in [5] we canpute it

with a relative error of order 0(/E)). if the asymptotic

series (4.3 & 8) contains non-zero terms, then obviously the

eigenfunction component in (5.5) is exponentially small

and its presence in the approximation is not noticed. On the

other hand, if all terms of the asymptotic series for Xk(e)

are zero, and if the coefficients p and q are of class

C0 only, we cannot determine by asymptotic expansions in

powers of E whether Xk(E) ' 0 for c # 0, nor can we

decide whether ak(c)/Ak(-) converges to a definite limit

(if the denominator is non-zero). Hence, for general C-0

coefficients we are unable to determine, whether a solution

exist for each small enough c and whether it converges for

£ - 0, if I Xk(C)I < , N.

If we have analytic coefficients p and q and if the

asymptotic series for Xk(c) vanishes, then we can apply

uniform reduction theory and connection formulae. If the

real interval (-1,1) is contained in the smallest of the

disks in complex plane, in which the power series expansions

of p, x/p and q are convergent, then it can be shown,

-12-



cf. Sibuya [9], that the equation L u- 0 has a solution

which converges uniformly on [-1,1] to a non-trivial solu-

tion of the reduced equation pu' - qu = 0; i.e. it can be

shown that the equation L u = 0 shows "resonance" in the

sense of Kopell (41, in that case. From this particular

solution plus a boundary layer approximation we can construct

easily an approximation to the solution of (1.2). By adding

boundary layers at both sides, we can also find a good esti-

mate of the k-th eigenvalue, which is of the same order as

is. We remark that it is not known, how to find a satis-

factory estimate of Xk(e) if the condition about the radii

of convergence is not satisfied.

6. A MULTIPLE TURNING POINT PROBLEM.

6.a) Position of the problem. We now return to the example

(1.1) of Wasow; however, instead of an inhomogeneous equation

we study the case with inhomogeneous boundary conditions,
L u :- -Cu" + p(x)u' = 0, u(-l) = A, u(1) = B , (6.1)

C

in which the coefficient p has several zeros in the interior

of the interval (-1,1). This problem can easily be solved

exactly:

u (x) = A + (B - A)T(x)/T (1), (6.2)

x t
-(x) -:= f exp{f p(s)ds/cldt
-1 -1

From this formula it is easily seen that the solution has

transition layers at the absolute maxima of a primitive of p

and is almost constant elsewhere.

Nevertheless, the study of this problem is interesting
from the point of view of its analogue in several dimensions,

where an exact solution does not exist. In [6] and [10] a

variational method is described which yields a formal approx-

imation, both in one and in several dimensions. In this sec-

tion we shall sketch a proof of the validity of this varia-

tional method in one dimension, without using the information

(6.2) we have about the exact solution. The proof carries

over to several dimensions, but is more complicated there.
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For a simplification of the presentation we shall make

the following assumptions

(i) all zeros of p are simple, p(-l) > 0 and p(1) <0,
(ii) p has 2n + 1 zeros; the zeros at which p' is

negative are denoted by Bi , i = O,...,n, and the

zeros at which p' is positive are denoted by

i, i = 1,...,n; moreover we define a0 := -1

and an+1 :1 , such that we have

O0 < 00 < al < B1 ""< an < an+l " (6.3)

(iii) A - 0 and B = 1.
There is nothing deep in those assumptions, they relieve

us of having to write down several alternatives in most of
the formulae. E.g. a boundary layer at the boundary points
+1 in general has a different structure than an internal

layer has; the assumption ±p(±l) < 0 precludes layers

at ±1.

6.b) The variational formulation. The variational approach

of (61 and (101 consists essentially of the followin. The

operator L is selfadjoint with respect to the weighted

inner product ("'*"w"

I(U,V) w := f u(x)v(x)exp(-P(x)/eldx , (6.4)
-1

x
P(x) : f p(t)dt

where the index I is chosen such that P(x) < 0 for all

x e [-1,11. Equivalent to problem (6.1) is the variational
problem to find u e H1 (-l1) which satisfies the boundary0
conditions u(-l) = A and u(1) = B and the variational

form

BC (UV) : C(uI'v')w M 0, V v e H 01(-1,1) (6.5)

When we try to find approximations to the solution of (6.5),

we see at once that the best candidates for approximations

are among those ones which are almost constant everywhere,

-14-



except possibly near the minima 8i (i - 0,...,n) of the

weight function, where internal transition layers may arise.

In 16] and (10] a formal approximation is constructed, which

is the solution of the restriction of BS to a finite dimen-

sional subspace consisting of such functions. We shall prove

here the validity of such a method by an argument common for

Galerkin methods. For it we have to find a subspace which

contains good approximations of the solution and of the test

functions; moreover, we have to find a suitable positive

lower bound for the bilinear form B

6.c) Construction of a formal approximation. In order to

construct the subspace in which we look for an approximation

of the solution u€ of (6.1) we first construct error

function-like foxmal approximations to the expected internal

transition layer terms at i (i 0,...,n) and, thereafter, we

show that a linear combination thereof may yield a good

approximation of u To this aim we define the functions
pi,$i, i and Xi:

P is a C cut-off function which satisfies

W 1, if Ix-oil Ihh :min i ai; (6.6)pi (x) 1 h:=mi8 1 -a 66
0, if Ix-8iI >1h,

i is an approximation to the non-constant part of P near
i ,

02k

0i(x) :2 P( i)(x-)/j!- 6i(x- ) 2 k  (6.7)
J=2

2k
inwhich 6i is chosen such that pi(x) < P(x) -P(B) - (x - Bi )  ,

Vx; *i is an approximation of the error function-like

transition layer at Si .

x
*j(x) := ui(c) I Pi(t)exp{Pi(t)/e}dt (6.8)

in which 1i(c) - (0p'i)/ 2 r)i(l + 0(c)) is such that
i (x) = 0 if x < a and i(x)= 1 if x > ai+l; Xi is

the function

Xi(x) :- *i_l(X) - *i(x), (i = l,...,n) (6.9)

j-15- _____________



which is nearly the characteristic function of

employed in [6] as test function in the variational form.

The construction implies that L Ci is zero outside

(cilai) and that it satisfies the estimates

IL .i(x) l < uCix - aiI2k-l p{(i(x)/Cj (6.10a)

< £J-I/2kcexp{(P(x) - P(8i))/Cl , (6.10b)

inside the interval.

A linear combination of these functions is to be an
approximation of the solution of (6.1). This linear combina-

tion is determined by the discretization of the variational

for (6.5). As test functions we take the subspace E,

E =span{xi,... ,xn

and we seek a solution vL in the linear manifold in + E,
which consists of all linear ccmbinations of bi(i=O,...,n)
that can satisfy the boundary conditions u(-l) = 0 and

u(l) = 1,

VE := Xi with i = 1 . (6.11)i~o i=o

This solution of the discretized variational form has to

satisfy

BC(vC X ) = 0, V X e E . (6.12)

Taking a basis in E we find the set of n equations

n
0 = B (v " Xi) = I -~ e P.ljw-C C =0 j 31 o

M 1 , I , 2

"i- l"i- i w - w

From these equations and the side condition 1 = , the

coefficients can be solved; it is easily seen that they are
all positive. Approximate evaluation of the integrals yields

the equations

i-lIi-lexp(-P (Sil)/c) = ni~jiexp-(-P (6 i )- / ) (1 + 0 (c)

-16-



Since P(8i) < 0 and P(81 ) = 0, this implies

li - 0(exp(P(0i)/e)), i = 0,...,n . (6.14)

6.d) A lower bound for the bilinear form. A lower bound for
Be is derived with the aid of the maximum principle and a
suitable barrier function. We shall employ the following

generalization of [8, Theorems 14 and 17] :
Lemma 1: If a positive continuous function W exists, which

is C except in the points {x 1 ,...,Xn c (-1,1) and which
satisfies

LrW(x) > AW(x) Vx P x. (i = l,...,n) , (6.15a)

W'(x i  0) ' +0 i=1
- 0 >W'(x1 + 0) (i = 1...,n) (6.15b)

then the smallest eigenvalue of L is not smaller than A.
2If moreover, u e C satisfies

u(tl) = 0 & L u(x) I <LCW(x), V x 7 x i , (6.16)

then u is bounded by W,

Ju(x) I < W(x), Vx, [-,1]

Proof: Assume that u - W has a positive maximum at an

interior point x = a 0 xi (i = 1,...,n), then LY(u - W) is

positive at a, which contradicts (6.16). If u(xi) -W(x i)

is a local maximum, then

u' (X) -W' (x i - 0) >0 and u'(x i ) -W' (x i - 0) < 0

this contradicts (6.15b). Hence u - W has no interior
maximu and is negative at the boundary, and thus negative

everywhere. Likewise -u - W is negative everywhere. For
the assertion on the eigenvalue, we assume LCu = Xu with

A < A; from L (u/w) < 0 it then follows analogously that

u/w has no interior maxima nor minima and hence that it is
zero everywhere. 0

A suitable barrier function is the function W,

-17-



W(x) = min (1 + t)exp{P(t)/z)dt, (6.17)

(1 - t)exp{P(t)/Eldt}

it satisfies the correct jump condition across the discon-

tinuity of W' and outside this point it satisfies
L W(x) = C exp{P(x)/}j

A is the minimum of this residue divided by W. Let Z be

the index for which the expression

P - min{max P(8i), max P(ei)I (6.18)j<i j)i

takes its minimal value, and let m and r be the indices

at which {P( i Ii < £} and fP(8 i ) i . £} respectively

take their maximal value. Obviously, r = I, since P has

an absolute maximum at 81. Standard computations show:

A. =min c exp(P(x)/c)/W(x) = (6.19)
x

= (-cp'(B )/27)exp(P -P(Sm)/C)(I+0(C))

It is easily seen from the minimax criterion (3.5) and the

trial function *m - r that CC-A C is an upper estimate

for the smallest eigenvalue. This shows that A is a
nearly optimal lower bound for B

6.e) Approximation properties of the subspace. The second

point on which the proof of the validity of the variational

approximation ve is based, is - as usual in Galerkin

methods - that the approximate solution space i + E con-

tains a satisfactory approximation of the true solution u .

We shall show that such an approximation is given by Ue,

n n
UE: - n + I uC (a)X =  ci i , (6.20)

i=l i=O
where Ci := u C(Mi+l) - u (i)" Since it follows from the

maximum principle that u is monotonely increasing, all

Ci are positive and smaller than or equal to one. Their

size can be estimated much better.

-18-
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Let us during this paragraph assume that P, has only

one absolute maximum in the interval (-1,1), viz. O
Define the barrier function o

x
Ifu (8- )exp(P(&)/e)d /c, if x_$

W 0 (x) := (6. 21)

y f E (-$I)exp(P(E)/e)dE/e, if x > 0

where y = (1 + 0(0)) is chosen such that W0is continuous

at $I. As in (6.17) this function satisfies

L W0  exp{P,(x)/el (6.22)

moreover, its derivative is continuous at 01and it has a

maximum there of order~ unity. More generally we have

W (ai.) = 0(max rc -exp(P(O.)/C)), if i < 1 (6.23)

and an analoous formula, where maximum is taken over j > i,
if i > I. Let now Y be a li.near combination of i

*n n
Y = IE vi*il V v 1  (6. 24a)

i=O i=O

in which the orders of the coefficients are prescribed by the

conditions

Vi - 0(exp(P(O )/C)), i = 01....n .(6.24b)

According to formula (6.10b), this linear combination satis-

fies the estimate

L CY < Cc c-/ 2 k exp~p(x)/c1

Since u C - Y has zero boundary values, we can apply the

second half of Lemma 1 with barrier function c J-1/2k W
This implies that u E - Y is bounded by C- l/2kW 0 and in

4 particular this shows

E u(ci+l) u C(a i) O(C 1 2 kW0 (a))

-19-
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At at least one point 0, at the left-hand side of B1 we

thus obtain an estimate for Ci of the fonm

i = O(Cl-I2kexp(P(ai)) " (6.26

and analogously at the right-hand side of

This process sketched above we can apply to each sub-

interval (aia i) of (-1,1), which contains only one

absolute maximum of P. Hence, starting with intervals con-

taining the largest maxima, we can go down step by step, in

each step establishing an estimate for at least two coeffi-

cients ci and loosing in each step a factor of order
-1/2k . Starting with a sufficiently large k, we obtain

in this way the estimate

Ii = O(e- exp(P(i))I O,...,n . (6.27)

For an estimate of the global error of the approximation

U., which we have constructed in * + E, we consider a

subinterval (ai,ci+l). At both endpoints UC - uC is zero

by definition; moreover, the estimates (6.10a) and (6.27)

imply

ILC (uC - u )lw, i<c -2 , (6.28a)

where 11 lyw, i is the restriction of the norm to the sub-

interval (cici+l). Since this subinterval does not contain

in its interior any zero of p at which p' is positive,

the smallest eigenvalue of the restriction of L to this

subinterval (with Dirichlet boundary conditions) is bounded
away from zero. Hence (6.28a) implies that (U€ - u ) is

of the same order. Adding up over all subintervals, we thus

find:

flu - uc 1 ,< ll_k-2 (6.28b)

6.f) Error bounds for the variational approximation. Having

now a lower bound for B and a good approximation in 4 +E,

we can apply the usual Galerkin-argument. From (6.5) and

(6.12) we find

C (u€ - v Cx) f0, V X E

-20-



. . . .

Adding and subtractirq Ue we find

B e(U- v,) = BC(Ue - u ,x)

Since U - ve is an element of E, we may choose X equal

to this. Hence we find

B (U - v,U, - v ) = Be(UC uCUC - v)=

= 2B (U5 - I - v.) - Be(U - v -U v) <

< (U - u - u )

where we used the estimate

B (u,v) < (B (uu)B (v,v)) < 1 B (u,u) +.B (vV)
£ C 2£

Together with the lower bound (6.19) this implies
v,12 < Ce2k-9/2 1 1

E:5 - vi < e{ P(sin) - -PC 9}

This does not at all look like a satisfactory estimate. How-

ever, if we evaluate IIU. - vilw approximately, we find
=C w

ni- 2

S j - j) 2

C j=O

< c 2k-9/2exp{P(m)/ •

This estimate we get precisely at the point in the interval,

that "generates" the smallest eigenvalue of L . If there

are several of such points, i.e. if (6.18) does not determine

a unique X, then at all those points such an estimate holds.
Now we can split the interval in (at least) two sub-

intervals, (-1,c£) and (a,l) and restrict the problem

(6.1) to both subintervals. Since a. is now a boundary
point for both problems, it does not generate an eigenvalue

that tends to zero, see Theorem 1 and the comments that
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follow it. Hence, applying the same proof as before, we get

error estimates at two other zeros of p, which in the

restricted problems generate the smallest eigenvalues. So

we can go on until we have obtained error estimates of type

(6.29) for all unknowns in the variational approximation.

Thereafter we can easily derive error estimates for all other

points of the interval by the maximum principle. So we have

finally proved:

Theorem 3: The approximation v, generated by the dis-

cretized variational form (6.12) satisfies the error estimate

iu (x) - v_ (x) I < C~k 9 / 4 . (6.30)

Remarks:

t) If p(-l) < 0, we have to add to the set of trial
functions {i }I a trial function whose exponential part is

of the form exp(p(-l) (x + 1)/e) and which represents an

ordinary boundary layer. If p(1) > 0 we do analogously.

ii) If p(-l) = 0 and p'(-l) < 0, we have to add to

the set of trial functions a function of the same type as the

other Vi, whose jump is concentrated near -1. If p(l)= 0

and p' (1) = 0 we do the same at x = +1.
iii) If p has a multiple zero, this zero generates a

point-spectrum that becomes dense on the whole positive real

axis, if c tends to zero, cf. [111. More specifically, if

p ( ) ' 0 and p(x) =)0((x - k ) (x - a), then the dis-

tance between two subsequent eigenvalues is of the order

O(ey),y := (k-l)/(k+1). If p changes sign at a with a

non-negative slope, the smallest eigenvalue generated at this

point is of exponentially small order and it has to be taken

in account as before. If p changes sign with non-positive

slope, or if p does not change sign, the smallest eigen-

value is bounded away from zero by a distance of order 0(EY),

hence we loose only an extra factor E-Y in going from

(6.28a) to (6.28b). However, at a point a where p

changes sign a boundary layer function has to be constructed

and added to the trial space; the boundary layer is of width
I/(k+l)

-22-



iv) The whole analysis carries over to problems
T

governed by equations of type -Eiu + P Vu = 0 on a bounded

domain in several dimensions, cf. [6], [10] and [121.

v) The estimate (6.19) yields a better estimate of the

first eigenvalue of LE than the formulae of Friedman and

Ventcel and Freidlin, cf. [131. It looks even not too diffi-

cult to obtain an approximation with a relative error of

order 0(E) by considering the approximation of its eigen-

function in E in somewhat more detail.
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